Facilitatory and inhibitory frequency tuning of combination-sensitive neurons in the primary auditory cortex of mustached bats.
نویسندگان
چکیده
Mustached bats, Pteronotus parnellii parnellii, emit echolocation pulses that consist of four harmonics with a fundamental consisting of a constant frequency (CF(1-4)) component followed by a short, frequency-modulated (FM(1-4)) component. During flight, the pulse fundamental frequency is systematically lowered by an amount proportional to the velocity of the bat relative to the background so that the Doppler-shifted echo CF(2) is maintained within a narrowband centered at approximately 61 kHz. In the primary auditory cortex, there is an expanded representation of 60.6- to 63. 0-kHz frequencies in the "Doppler-shifted CF processing" (DSCF) area where neurons show sharp, level-tolerant frequency tuning. More than 80% of DSCF neurons are facilitated by specific frequency combinations of approximately 25 kHz (BF(low)) and approximately 61 kHz (BF(high)). To examine the role of these neurons for fine frequency discrimination during echolocation, we measured the basic response parameters for facilitation to synthesized echolocation signals varied in frequency, intensity, and in their temporal structure. Excitatory response areas were determined by presenting single CF tones, facilitative curves were obtained by presenting paired CF tones. All neurons showing facilitation exhibit at least two facilitative response areas, one of broad spectral tuning to frequencies centered at BF(low) corresponding to a frequency in the lower half of the echolocation pulse FM(1) sweep and another of sharp tuning to frequencies centered at BF(high) corresponding to the CF(2) in the echo. Facilitative response areas for BF(high) are broadened by approximately 0.38 kHz at both the best amplitude and 50 dB above threshold response and show lower thresholds compared with the single-tone excitatory BF(high) response areas. An increase in the sensitivity of DSCF neurons would lead to target detection from farther away and/or for smaller targets than previously estimated on the basis of single-tone responses to BF(high). About 15% of DSCF neurons show oblique excitatory and facilitatory response areas at BF(high) so that the center frequency of the frequency-response function at any amplitude decreases with increasing stimulus amplitudes. DSCF neurons also have inhibitory response areas that either skirt or overlap both the excitatory and facilitatory response areas for BF(high) and sometimes for BF(low). Inhibition by a broad range of frequencies contributes to the observed sharpness of frequency tuning in these neurons. Recordings from orthogonal penetrations show that the best frequencies for facilitation as well as excitation do not change within a cortical column. There does not appear to be any systematic representation of facilitation ratios across the cortical surface of the DSCF area.
منابع مشابه
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus
This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the audit...
متن کاملCombination-sensitive neurons in the primary auditory cortex of the mustached bat.
In the mustached bat, Pteronotus parnellii, neurons in the primary auditory cortex (AI) have been thought to respond primarily to single frequencies, as in other mammals. However, neurons in the Doppler-shifted constant-frequency (DSCF) area, a part of the mustached bat's AI that contains an overrepresentation of the prominent CF2 component of the biosonar signal, were found to show facilitativ...
متن کاملPostnatal maturation of primary auditory cortex in the mustached bat, Pteronotus parnellii.
The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess to which degree AI postnatal maturation depends...
متن کاملSpectral integration in the inferior colliculus: role of glycinergic inhibition in response facilitation.
This study examined the contribution of glycinergic inhibition to the time-sensitive spectral integration performed by neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii). These neurons are sometimes called combination-sensitive because they display facilitatory (or inhibitory) responses to the combination of distinct spectral elements in sonar or social vocalizations...
متن کاملIntracellular recordings from combination-sensitive neurons in the inferior colliculus.
In vertebrate auditory systems, specialized combination-sensitive neurons analyze complex vocal signals by integrating information across multiple frequency bands. We studied combination-sensitive interactions in neurons of the inferior colliculus (IC) of awake mustached bats, using intracellular somatic recording with sharp electrodes. Facilitated combinatorial neurons are coincidence detector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 1999